LSE creators

Number of items: 6.
Mathematics
  • Neuwohner, Meike, Silina, Olha, Zlatin, Michael (2026). A better-than-2 approximation for the directed tree augmentation problem. In Green Larsen, Kasper, Saha, Barna (Eds.), Proceedings of the 2026 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 1536-1569). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611978971.56
  • Blauth, Jannis, Neuwohner, Meike, Puhlmann, Luise, Vygen, Jens (2025). Improved guarantees for the A Priori TSP. Mathematics of Operations Research, 50(4), 2909 - 2940. https://doi.org/10.1287/moor.2023.0322 picture_as_pdf
  • Eickhoff, Katharina, Neuwohner, Meike, Peis, Britta, Rieken, Niklas, Vargas Koch, Laura, Végh, Lázló A. (2025). Faster dynamic auctions via polymatroid sum. ACM Transactions on Economics and Computation, 13(3), 1 - 47. https://doi.org/10.1145/3729429 picture_as_pdf
  • Abdi, Ahmad, Dalirrooyfarda, Mahsa, Neuwohner, Meike (2025). Strong orientation of a connected graph for a crossing family. Operations Research Letters, 62, https://doi.org/10.1016/j.orl.2025.107333 picture_as_pdf
  • Neuwohner, Meike (2025). A 4/3-approximation for the maximum leaf spanning arborescence problem in DAGs. Mathematical Programming, https://doi.org/10.1007/s10107-025-02233-0 picture_as_pdf
  • Statistics
  • Natura, Bento, Neuwohner, Meike, Weltge, Stefan (2022). The Pareto cover problem. In Chechik, Shiri, Navarro, Gonzalo, Rotenberg, Eva, Herman, Grzegorz (Eds.), Leibniz International Proceedings in Informatics, LIPIcs . Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ESA.2022.80 picture_as_pdf