LSE creators

Number of items: 60.
2025
  • Frigg, Roman, Alexander, J. Mc Kenzie, Hudetz, Laurenz, Rédei, Miklós, Ross, Lewis, Worrall, John (2025). Introduction. In Synthese Library (pp. 1-6). Springer Science and Business Media B.V.. https://doi.org/10.1007/978-3-031-88213-5_1 picture_as_pdf
  • Alexander, J. Mckenzie, Hudetz, Laurenz, Rédei, Miklós, Ross, Lewis, Worrall, John (2025). Proofs and research programmes: Lakatos at 100. Springer. picture_as_pdf
  • 2024
  • Rédei, Miklós, Gömöri, Márton (2024). Entropic taming of the Look Elsewhere Effect. Synthese, 203(1). https://doi.org/10.1007/s11229-023-04434-6 picture_as_pdf
  • Rédei, Miklós (2024). George Polya’s reaction to Imre Lakatos’ ’Proofs and Refutations’. In Daniel, G., Mate, Sz., Tuboly, A.T. (Eds.), Lakatos in Hungary. A narrated source book . Springer. picture_as_pdf
  • 2021
  • Rédei, Miklós, Gyenis, Zalán (2021). The maxim of probabilism, with special regard to Reichenbach. Synthese, 199(3-4), 8857 - 8874. https://doi.org/10.1007/s11229-021-03185-6 picture_as_pdf
  • Miklós, Rédei, Gyenis, Zalán (2021). Having a look at the Bayes Blind Spot. Synthese, https://doi.org/10.1007/s11229-019-02311-9 picture_as_pdf
  • 2020
  • Miklós, Rédei (2020). On the tension between physics and mathematics. Journal for General Philosophy of Science, 51(3), 411 - 425. https://doi.org/10.1007/s10838-019-09496-0 picture_as_pdf
  • 2018
  • Brown, William, Gyenis, Zalán, Rédei, Miklós (2018). The modal logic of Bayesian belief revision. Journal of Philosophical Logic, https://doi.org/10.1007/s10992-018-9495-9 picture_as_pdf
  • 2017
  • Gyenis, Zalán, Rédei, Miklós (2017). General properties of Bayesian learning as statistical inference determined by conditional expectations. Review of Symbolic Logic, 10(4), 719-755. https://doi.org/10.1017/S1755020316000502
  • Gyenis, Zalán, Rédei, Miklós (2017). Categorial subsystem independence as morphism co-possibility. Communications in Mathematical Physics, https://doi.org/10.1007/s00220-017-2940-8
  • Gyenis, Zalán, Rédei, Miklós (2017). Common cause completability of non-classical probability spaces. Belgrade Philosophical Annual,
  • 2016
  • Rédei, Miklós, Gyenis, Zalán (2016). Measure theoretic analysis of consistency of the Principal Principle. Philosophy of Science, 83(5), 972-987. https://doi.org/10.1086/687879
  • Gyenis, Zalán, Hofer-Szabo, Gabor, Rédei, Miklós (2016). Conditioning using conditional expectations:the Borel-Kolmogorov Paradox. Synthese, 194(7), 2595-2630. https://doi.org/10.1007/s11229-016-1070-8
  • 2015
  • Kitajima, Yuichiro, Rédei, Miklós (2015). Characterizing common cause closedness of quantum probability theories. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52(B), 234-241. https://doi.org/10.1016/j.shpsb.2015.08.003
  • Gyenis, Zalán, Rédei, Miklós (2015). Defusing Bertrand's paradox. British Journal for the Philosophy of Science, 66(2), 349 - 373. https://doi.org/10.1093/bjps/axt036
  • Gyenis, Z., Rédei, Miklós (2015). Why Bertrand's Paradox is not paradoxical but is felt so. In Maki, U., Ruphy, S., Schurz, G., Votsis, I. (Eds.), Recent Developments in the Philosophy of Science: EPSA13 Helsinki (pp. 265-276). Springer Berlin / Heidelberg.
  • 2014
  • Rédei, Miklós (2014). A categorial approach to relativistic locality. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 48(S1), 137-146. https://doi.org/10.1016/j.shpsb.2014.08.014
  • Rédei, Miklós (2014). Assessing the status of the common cause principle. In Galavotti, Maria Carla, Dieks, Dennis, Gonzalez, Wenceslao J., Hartmann, Stephan, Uebel, Thomas, Weber, Marcel (Eds.), New Directions in the Philosophy of Science (pp. 433-442). Springer International (Firm). https://doi.org/10.1007/978-3-319-04382-1_29
  • Gyenis, Zalán, Rédei, Miklós (2014). Atomicity and causal completeness. Erkenntnis, 79(3), 437-451. https://doi.org/10.1007/s10670-013-9456-1
  • Rédei, Miklós (2014). Hilbert's 6th problem and axiomatic quantum field theory. Perspectives on Science, 22(1), 80-97. https://doi.org/10.1162/POSC_a_00119
  • 2013
  • Redei, Miklós, Hofer-Szabo, Gabor, Szabo, Laszlo (2013). The principle of the common cause. Cambridge University Press.
  • 2012
  • Rédei, Miklós, San Pedro, Iñaki (2012). Distinguishing causality principles. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43(2), 84-89. https://doi.org/10.1016/j.shpsb.2012.02.002
  • Rédei, Miklós, Werndl, Charlotte (2012). On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution. Archive for History of Exact Sciences, 66(1), 71-93. https://doi.org/10.1007/s00407-011-0089-y
  • Rédei, Miklós (2012). Some historical and philosophical aspects of quantum probability theory and its interpretation. In Probabilities, Laws, and Structures (pp. 497-506). Springer Netherlands. https://doi.org/10.1007/978-94-007-3030-4_36
  • 2011
  • Gyenis, Zalán, Rédei, Miklós (2011). Characterizing common cause closed probability spaces. Philosophy of Science, 78(3), 393-409. https://doi.org/10.1086/660302
  • Rédei, Miklós (2011). Einstein meets von Neumann: locality and operational independence in algebraic quantum field theory. In Halvorson, Hans (Ed.), Deep Beauty: Understanding the Quantum World Through Mathematical Innovation (pp. 343-364). Cambridge University Press.
  • Rédei, Miklós, Gyenis, Balazs (2011). Causal completeness of probability theories-results and open problems. In McKay Illari, Phyllis, Russo, Federica, Williamson, Jon (Eds.), Causaulity in the Sciences . Oxford University Press.
  • Rédei, Miklós, Stadler, Friedrich (2011). Austria-Hungary in philosophy and science: a search for the evidence. In Máté, András, Rédei, Miklós, Stadler, Friedrich (Eds.), Der Wiener Kreis in Ungarn: the Vienna Circle in Hungary (pp. 9-24). Springer Berlin / Heidelberg.
  • Gyenis, Balazs, Rédei, Miklós (2011). Causal completeness in general probability theories. In Suárez, Mauricio (Ed.), Probabilities, Causes and Propensities in Physics . Springer Berlin / Heidelberg. https://doi.org/10.1007/978-1-4020-9904-5_7
  • Máté, András, Rédei, Miklós, Stadler, Friedrich (Eds.) (2011). Der Wiener Kreis in Ungarn: the Vienna circle in Hungary. Springer Berlin / Heidelberg.
  • 2010
  • Rédei, Miklós (2010). Einstein's dissatisfaction with nonrelativistic quantum mechanics and relativistic quantum field theory. Philosophy of Science, 77(5), 1042-1057. https://doi.org/10.1086/656819
  • Rédei, Miklós, Valente, Giovanni (2010). How local are local operations in local quantum field theory? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(4), 346-353. https://doi.org/10.1016/j.shpsb.2010.09.001
  • Rédei, Miklós (2010). Operational independence and operational separability in algebraic quantum mechanics. Foundations of Physics, 40(9-10), 1439-1449. https://doi.org/10.1007/s10701-010-9447-x
  • Suárez, Mauricio, Dorato, Mauro, Rédei, Miklós (Eds.) (2010). EPSA epistemology and methodology of science. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-90-481-3263-8
  • Suárez, Mauricio, Dorato, Mauro, Rédei, Miklós (Eds.) (2010). EPSA philosophical issues in the sciences. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-90-481-3252-2
  • Lászlo, E. Szabó, Gyenis, Balázs, Gyenis, Zalán, Rédei, Miklós, Szabó, Gábor (2010). Korrelációk kauzális magyarázata. Magyar Filozófiai Szemle, 2010(3).
  • Rédei, Miklós, Summers, Stephen J. (2010). When are quantum systems operationally independent? International Journal of Theoretical Physics, 49(12), 3250-3261. https://doi.org/10.1007/s10773-009-0010-5
  • 2009
  • Rédei, Miklós (2009). The Birkhoff-von Neumann concept of quantum logic. In Engesser, Kurt, Gabbay, Dov M., Lehmann, Daniel (Eds.), Handbook of Quantum Logic and Quantum Structures: Quantum Logic (pp. 1-22). Elsevier (Firm). https://doi.org/10.1016/B978-0-444-52869-8.50004-9
  • 2007
  • Rédei, Miklós, Summers, Stephen Jeffrey (2007). Quantum probability theory. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 38(2), 390-417. https://doi.org/10.1016/j.shpsb.2006.05.006
  • Rédei, Miklós (2007). The birth of quantum logic. History and Philosophy of Logic, 28(2), 107-122. https://doi.org/10.1080/01445340601113955
  • Dall Chiara, Maria Luisa, Giuntini, Roberto, Rédei, Miklós (2007). The history of quantum logic. In Gabbay, Dov M., Woods, John (Eds.), Handbook of the History of Logic: the Many Valued and Nonmotonic Turn in Logic (pp. 205-283). Elsevier (Firm). https://doi.org/10.1016/S1874-5857(07)80007-0
  • 2006
  • Rédei, Miklós (2006). John von Neumann on quantum correlations. In Demopoulos, William, Pitowsky, Itamar (Eds.), Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub (pp. 241-252). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-4876-9_11
  • Hofer-Szabo, Gabor, Rédei, Miklós (2006). Reichenbachian common cause systems of arbitrary finite size exist. Foundations of Physics, 36(5), 745-756. https://doi.org/10.1007/s10701-005-9040-x
  • Rédei, Miklós, Stöltzner, Michael (2006). Soft axiomatization: John von Neumann on method and von Neumann's method in the physical sciences. In Carson, Emily, Huber, Renate (Eds.), Intuition and the Axiomatic Method (pp. 235-249). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-4040-7_11
  • 2005
  • Rédei, Miklós (2005). John von Neumann on mathematical and axiomatic physics. In Boniolo, Giovanni, Budinich, Paolo, Trobok, Majda (Eds.), The Role of Mathematics in Physical Sciences: Interdisciplinary and Philosophical Aspects (pp. 43-54). Springer Berlin / Heidelberg. https://doi.org/10.1007/1-4020-3107-6_4
  • Rédei, Miklós (Ed.) (2005). John von Neumann: selected letters. American Mathematical Society.
  • Rédei, Miklós, Summers, Stephen J. (2005). Remarks on causality in relativistic quantum field theory. International Journal of Theoretical Physics, 44(7), 1029-1039. https://doi.org/10.1007/s10773-005-7079-2
  • 2004
  • Rédei, Miklós (2004). Operator algebras and quantum logic. In Weingartner, Paul (Ed.), Alternative Logics: Do Sciences Need Them? (pp. 349-360). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-3-662-05679-0_23
  • Hofer-Szabo, Gabor, Rédei, Miklós (2004). Reichenbachian common cause systems. International Journal of Theoretical Physics, 43(7/8), 1819-1826. https://doi.org/10.1023/B:IJTP.0000048822.29070.0c
  • Rédei, Miklós (2004). Thinking about thought experiments in physics: comment on "experiments and thought experiments in natural science". In Galavotti, Maria Carla (Ed.), Observation and Experiment in the Natural and Social Sciences (pp. 237-241). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48123-5_16
  • Gyenis, Balázs, Rédei, Miklós (2004). When can statistical theories be causally closed? Foundations of Physics, 34(9), 1285-1303. https://doi.org/10.1023/B:FOOP.0000044094.09861.12
  • 2002
  • Rédei, Miklós (2002). Two comments on the vacuum in algebraic quantum field theory. In Kuhlmann, Meinard, Lyre, Holger, Wayne, Andrew (Eds.), Ontologial Aspects of Quantum Field Theory . World Scientific (Firm).
  • Hofer-Szabo, Gabor, Rédei, Miklós, Szabo, László E. (2002). Common-causes are not common common-causes. Philosophy of Science, 69(4), 623-636. https://doi.org/10.1086/344625
  • Rédei, Miklós, Summers, Stephen J. (2002). Local primitive causality and the common cause principle in quantum field theory. Foundations of Physics, 32(3), 335-355. https://doi.org/10.1023/A:1014869211488
  • Rédei, Miklós (2002). Mathematical physics and philosophy of physics (with special consideration of J. von Neumann's work). In Heidelberger, Michael, Stadler, Friedrich (Eds.), History of Philosophy of Science: New Trends and Perspectives (pp. 239-243). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-1785-4_18
  • Rédei, Miklós (2002). Reichenbach’s common cause principle and quantum correlations. In Placek, T., Butterfield, Jeremy (Eds.), Non-Locality and Modality: Proceedings of the Nato Advanced Research Workshop on Modality, Probability, and Bell's Theorems, Cra (pp. 259-270). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-010-0385-8_17
  • 2001
  • Rédei, Miklós (2001). Facets of quantum logic. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 32(1), 101-111. https://doi.org/10.1016/S1355-2198(00)00013-7
  • Rédei, Miklós, Stöltzner, Michael (Eds.) (2001). John von Neumann and the foundations of quantum physics. Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-2012-0
  • Rédei, Miklós (2001). Von Neumann's concept of quantum logic and quantum probability. In Rédei, Miklós, Stöltzner, Michael (Eds.), John Von Neumann and the Foundations of Quantum Physics (pp. 153-172). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-94-017-2012-0_10
  • 2000
  • Hofer-Szabo, Gabor, Rédei, Miklós, Szabo, Laszlo (2000). Common cause completability of classical and quantum probability spaces. International Journal of Theoretical Physics, 39(3), 913-919. https://doi.org/10.1023/A:1003643300514