LSE creators

Number of items: 83.
Economic History
  • Gomulka, Stanislaw, Ostaszewski, Adam, Davies, Ray O. (1999). The innovation rate and Kalecki's theory of trend, unemployment and the business cycle. In Sawyer, Malcolm (Ed.), The Legacy of Michal Kalecki . Edward Elgar.
  • Mathematics
  • Ostaszewski, Adam (2025). Darboux and shift-compactness paradigms: automatic continuity in the Gołąb-Schinzel and the Goldie equations. Aequationes Mathematicae, 99(6), 2819 - 2845. https://doi.org/10.1007/s00010-025-01209-x picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2025). The Goldie equation: III. Homomorphisms from functional equations. Aequationes Mathematicae, 99(3), 1085 - 1123. https://doi.org/10.1007/s00010-024-01133-6 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2025). Homomorphisms from functional equations: The Goldie equation, II. Aequationes Mathematicae, 99(1), 1 - 19. https://doi.org/10.1007/s00010-024-01130-9 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2024). Parthasarathy, shift-compactness and infinite combinatorics. Indian Journal of Pure and Applied Mathematics, 55(3), 931 – 948. https://doi.org/10.1007/s13226-024-00638-9 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2024). The Steinhaus-Weil property IV: other interior-point properties. Sarajevo Journal of Mathematics, 18(2), 203-210. https://doi.org/10.5644/SJM.18.02.02 picture_as_pdf
  • Gietzmann, Miles, Ostaszewski, Adam (2023). The kind of silence: managing a reputation for voluntary disclosure in financial markets. Annals of Finance, 19(4), 419 - 447. https://doi.org/10.1007/s10436-023-00430-5 picture_as_pdf
  • Burdzy, Krzysztof, Ostaszewski, Adam (2023). Freezing in space-time: a functional equation linked with a PDE system. Journal of Mathematical Analysis and Applications, 524(2). https://doi.org/10.1016/j.jmaa.2023.127018 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2022). The Steinhaus-Weil property: II. The Simmons-Mospan Converse. Sarajevo Journal of Mathematics, 17(2), 179 - 186. https://doi.org/10.5644/SJM.16.02.04 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2022). The Steinhaus-Weil property III: Weil topologies. Sarajevo Journal of Mathematics, 18(1), 129-142. https://doi.org/10.5644/SJM.17.02.01 picture_as_pdf
  • Miller, Harry I., Miller-Van Wieren, Leila, Ostaszewski, Adam (2021). Beyond Erdős-Kunen-Mauldin: shift-compactness properties and singular sets. Topology and its Applications, 291, https://doi.org/10.1016/j.topol.2021.107605 picture_as_pdf
  • Alpern, Steve, Chen, Bo, Ostaszewski, Adam (2021). A functional equation of tail-balance for continuous signals in the Condorcet jury theorem. Aequationes Mathematicae, 95(1), 67 - 74. https://doi.org/10.1007/s00010-020-00750-1 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2020). Sequential regular variation: extensions of Kendall's Theorem. Quarterly Journal of Mathematics, 71(4), 1171 - 1200. https://doi.org/10.1093/qmathj/haaa019 picture_as_pdf
  • Bingham, N. H., Jabłońska, Eliza, Jabłoński, Wojciech, Ostaszewski, Adam (2020). On subadditive functions bounded above on a large set. Results in Mathematics, 75(2). https://doi.org/10.1007/s00025-020-01186-4 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2020). General regular variation, Popa groups and quantifier weakening. Journal of Mathematical Analysis and Applications, 483(2). https://doi.org/10.1016/j.jmaa.2019.123610 picture_as_pdf
  • Ostaszewski, Adam, Gietzmann, Miles, Schroeder, M.H.G. (2020). Guiding the guiders: foundations of a market-driven theory of disclosure. Banach Center Publications, 122, 107-132. https://doi.org/10.4064/bc122-7 picture_as_pdf
  • Bingham, Nick H., Ostaszewski, Adam (2020). The Steinhaus-Weil property: I. Subcontinuity and amenability. Sarajevo Journal of Mathematics, 16(1), 13 - 32. https://doi.org/10.5644/SJM.16.01.02 picture_as_pdf
  • Ostaszewski, Adam, Davies, Roy O. (2019). Optimal forward contract design for inventory: a value-of-waiting analysis. In Brzdek, Janusz, Popa, Dorian, Rassias, Themistocles M. (Eds.), Ulam type stability (pp. 73-97). Springer International (Firm). picture_as_pdf
  • Ostaszewski, Adam (2019). Subdominant eigenvalue location and the robustness of dividend policy irrelevance. In Brzdek, Janusz, Popa, Dorian, Rassias, Themistocles M. (Eds.), Ulam type stability (pp. 273-324). Springer International (Firm). picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2019). Beyond Haar and Cameron-Martin: the Steinhaus support. Topology and its Applications, 260, 23 - 56. https://doi.org/10.1016/j.topol.2019.03.020 picture_as_pdf
  • Ostaszewski, Adam, Bingham, N. H. (2019). Variants on the Berz sublinearity theorem. Aequationes Mathematicae, 93(2), 351-369. https://doi.org/10.1007/s00010-018-0618-8 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2018). Set theory and the analyst. European Journal of Mathematics, https://doi.org/10.1007/s40879-018-0278-1 picture_as_pdf
  • Bingham, N. H., Ostaszewski, Adam (2018). Beyond Lebesgue and Baire IV: density topologies and a converse Steinhaus-Weil theorem. Topology and its Applications, 239, 274-292. https://doi.org/10.1016/j.topol.2017.12.029
  • Bingham, N. H., Ostaszewski, A. J. (2017). Additivity, subadditivity and linearity: automatic continuity and quantifier weakening. Indagationes Mathematicae, 29(2), 687-713. https://doi.org/10.1016/j.indag.2017.11.005
  • Bingham, N. H., Ostaszewski, Adam (2017). Category-measure duality: convexity, mid-point convexity and Berz sublinearity. Aequationes Mathematicae, 91(5), 801-836. https://doi.org/10.1007/s00010-017-0486-7
  • Ostaszewski, Adam (2017). Homomorphisms from functional equations in probability. In Brzdek, J., Cieplinski, K., Rassias, T. M (Eds.), Developments in Functional Equations and Related Topics (pp. 171-213). Springer Berlin / Heidelberg.
  • Ostaszewski, Adam (2016). Stable laws and Beurling kernels. Advances in Applied Probability, 48(A), 239-248. https://doi.org/10.1017/apr.2016.53
  • Gietzmann, Miles B., Ostaszewski, Adam (2016). The sound of silence: equilibrium filtering and optimalcensoring in financial markets. Advances in Applied Probability, 48(A), 119-144. https://doi.org/10.1017/apr.2016.45
  • Bingham, N. H., Ostaszewski, Adam (2016). Beurling moving averages and approximate homomorphisms. Indagationes Mathematicae, 27(3), 601-633. https://doi.org/10.1016/j.indag.2015.11.011
  • Ostaszewski, Adam (2016). Homomorphisms from functional equations: the Goldie equation. Aequationes Mathematicae, 90(2), 427-448. https://doi.org/10.1007/s00010-015-0357-z
  • Falconer, Kenneth, Gruber, Peter M., Ostaszewski, Adam, Stuart, Trevor (2015). Claude Ambrose Rogers. 1 November 1920 — 5 December 2005. Biographical Memoirs of Fellows of the Royal Society, 61, 403-435. https://doi.org/10.1098/rsbm.2015.0007
  • Ostaszewski, A. J. (2015). Beurling regular variation, Bloom dichotomy, and the Gołąb–Schinzel functional equation. Aequationes Mathematicae, 89(3), 725-744. https://doi.org/10.1007/s00010-014-0260-z
  • Bingham, N. H., Ostaszewski, A. J. (2015). Cauchy’s functional equation and extensions: Goldie’s equation and inequality, the Gołąb–Schinzel equation and Beurling’s equation. Aequationes Mathematicae, 89(5), 1293-1310. https://doi.org/10.1007/s00010-015-0350-6
  • Ostaszewski, Adam (2015). Effros, Baire, Steinhaus and non-separability. Topology and its Applications, 195, 265-274. https://doi.org/10.1016/j.topol.2015.09.033
  • Gietzmann, Miles B., Ostaszewski, Adam J. (2014). Why managers with low forecast precision select high disclosure intensity: an equilibrium analysis. Review of Quantitative Finance and Accounting, 43(1), 121-153. https://doi.org/10.1007/s11156-013-0367-7
  • Gietzmann, Miles B., Ostaszewski, Adam (2014). Multi-firm voluntary disclosures for correlated operations. Annals of Finance, 10(1), 1-45. https://doi.org/10.1007/s10436-012-0222-1
  • Bingham, N. H., Ostaszewski, A. J. (2014). Beurling slow and regular variation. Transactions of the London Mathematical Society, 1(1), 29 - 56. https://doi.org/10.1112/tlms/tlu002
  • Bingham, N. H., Ostaszewski, A. J. (2013). The Steinhaus theorem and regular variation: de Bruijn and after. Indagationes Mathematicae, 24(4), 679-692. https://doi.org/10.1016/j.indag.2013.05.002
  • Ostaszewski, Adam (2013). Beyond Lebesgue and Baire III: Steinhausʼ theorem and its descendants. Topology and its Applications, 160(10), 1144-1154. https://doi.org/10.1016/j.topol.2013.04.005
  • Gao, Zhan, Ohlson, James A., Ostaszewski, Adam (2013). Dividend policy irrelevancy and the construct of earnings. Journal of Business Finance and Accounting, 40(5-6), 673-694. https://doi.org/10.1111/jbfa.12019
  • Ostaszewski, Adam (2013). The semi-polish theorem: one-sided vs joint continuity in groups. Topology and its Applications, 160(10), 1155-1163. https://doi.org/10.1016/j.topol.2013.05.006
  • Ostaszewski, Adam (2013). Almost completeness and the Effros open mapping principle in normed groups. Topology Proceedings, 41, 99-110.
  • Ostaszewski, Adam (2013). Shift-compactness in almost analytic submetrizable baire groups and spaces. Topology Proceedings, 41, 123-151.
  • Miller, Harry I., Ostaszewski, Adam (2012). Group action and shift-compactness. Journal of Mathematical Analysis and Applications, 392(1), 23-39. https://doi.org/10.1016/j.jmaa.2012.02.021
  • Ostaszewski, Adam (2012). Analytic Baire spaces. Fundamenta Mathematicae, 217(3), 189-210. https://doi.org/10.4064/fm217-3-1
  • Bingham, N. H., Ostaszewski, A. J. (2011). Homotopy and the Kestelman-Borwein-Ditor theorem. Canadian Mathematical Bulletin, 54(1), 12-20. https://doi.org/10.4153/CMB-2010-093-4
  • Ostaszewski, Adam (2011). Analytically heavy spaces: analytic cantor and analytic Baire theorems. Topology and its Applications, 158(3), 253-275. https://doi.org/10.1016/j.topol.2010.11.001
  • Bingham, N. H., Ostaszewski, Adam (2010). Regular variation without limits. Journal of Mathematical Analysis and Applications, 370(2), 322-338. https://doi.org/10.1016/j.jmaa.2010.04.013
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: I. Slow variation. Topology and its Applications, 157(13), 1999-2013. https://doi.org/10.1016/j.topol.2010.04.001
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: II. The fundamental theorems. Topology and its Applications, 157(13), 2014-2023. https://doi.org/10.1016/j.topol.2010.04.003
  • Bingham, N. H., Ostaszewski, Adam (2010). Topological regular variation: III. Regular variation. Topology and its Applications, 157(13), 2024-2037. https://doi.org/10.1016/j.topol.2010.04.002
  • Bingham, N. H., Ostaszewski, Adam (2010). Kingman, category and combinatorics. In Bingham, N. H., Goldie, C. M. (Eds.), Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman (pp. 135-169). Cambridge University Press.
  • Ostaszewski, Adam (2010). Regular variation, tological dynamics, and the uniform boundedness theorem. Topology Proceedings, 36, 305-336.
  • Bingham, N. H., Ostaszewski, A. J. (2010). Automatic continuity via analytic thinning. Proceedings of the American Mathematical Society, 138(03), p. 907. https://doi.org/10.1090/S0002-9939-09-09984-5
  • Bingham, N. H., Ostaszewski, A. J. (2010). Beyond Lebesgue and Baire II: bitopology and measure-category duality. Colloquium Mathematicum, 121(2), 225-238. https://doi.org/10.4064/cm121-2-5
  • Bingham, N. H., Ostaszewski, A. J. (2010). Dichotomy and infinite combinatorics: the theorems of Steinhaus and Ostrowski. Mathematical Proceedings of the Cambridge Philosophical Society, 150, 1-22. https://doi.org/10.1017/S0305004110000496
  • Bingham, N. H., Ostaszewski, A. J. (2010). Normed versus topological groups: dichotomy and duality. Dissertationes Mathematicae, 472, 1-138. https://doi.org/10.4064/dm472-0-1
  • Bingham, N. H., Ostaszewski, Adam (2009). Infinite combinatorics and the foundations of regular variation. Journal of Mathematical Analysis and Applications, 360(2), 518-529. https://doi.org/10.1016/j.jmaa.2009.04.061
  • Bingham, N. H., Ostaszewski, A. J. (2009). Automatic continuity: subadditivity, convexity, uniformity. Aequationes Mathematicae, 78(3), 257-270. https://doi.org/10.1007/s00010-009-2982-x
  • Bingham, N. H., Ostaszewski, Adam (2009). Beyond Lebesgue and Baire: generic regular variation. Colloquium Mathematicum, 116(1), 119-138. https://doi.org/10.4064/cm116-1-6
  • Bingham, N. H., Ostaszewski, A. J. (2009). The Index Theorem of topological regular variation and its applications. Journal of Mathematical Analysis and Applications, 358(2), 238-248. https://doi.org/10.1016/j.jmaa.2009.03.071
  • Bingham, N. H., Ostaszewski, A. J. (2009). Infinite combinatorics in function spaces: category methods. Publications de L’institut Mathématique, 86(100), 55-73. https://doi.org/10.2298/PIM0900055B
  • Bingham, N. H., Ostaszewski, Adam (2009). Very slowly varying functions. II. Colloquium Mathematicum, 116(1), 105 - 117. https://doi.org/10.4064/cm116-1-5
  • Ostaszewski, Adam, Gietzmann, Miles B. (2008). Value creation with Dye’s disclosure option: optimal risk-shielding with an upper tailed disclosure strategy. Review of Quantitative Finance and Accounting, 31(1), 1-27. https://doi.org/10.1007/s11156-007-0057-4
  • Bingham, N. H., Ostaszewski, A. J. (2008). Generic subadditive functions. Proceedings of the American Mathematical Society, 136(12), 4257-4266. https://doi.org/10.1090/S0002-9939-08-09504-X
  • Bingham, N. H., Ostaszewski, Adam (2007). Very slowly varying functions - II. (CDAM Research Report Series 2007-03). London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Analytic automaticity: the theorems of Jones and Kominek. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Beyond Lebesgue and Baire: generic regular variation. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Duality and the Kestelman-Borwein-Ditor theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Generic subadditive functions. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Genericity and the Kestelman-Borwein-Ditor Theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). Homotopy and the Kestelman-Borwein-Ditor theorem. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). New automatic properties: subadditivity, convexity, uniformity. London School of Economics and Political Science.
  • Ostaszewski, Adam, Gietzmann, Miles (2007). Value creation with dyes disclosure option: optimal risk-shielding with an upper tailed disclosure strategy. London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2007). The converse Ostrowski theorem. London School of Economics and Political Science.
  • Ohlson, James A., Ostaszewski, Adam, Gao, Zhan (2006). Dividend policy irrelevancy and the construct of earnings. (CDAM research report LSE-CDAM-2006-23). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Bingham, N. H., Ostaszewski, Adam (2006). Foundations of regular variation. (CDAM research report LSE-CDAM-2006-22). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Ostaszewski, Adam (2006). Returns to costly pre-bargaining claims: taking a principled stand. Journal of Economic Studies, 33(2), 144-170. https://doi.org/10.1108/01443580610666091
  • Ostaszewski, Adam (2005). Returns to costly pre-bargaining claims: taking a principled stand. (CDAM research report series LSE-CDAM-2005-07). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Ostaszewski, Adam (2004). "Equity smirks" and embedded options: the shape of a firm's value function. Accounting and Business Research, 34(4), 301-321. https://doi.org/10.1080/00014788.2004.9729974
  • Gietzmann, Miles B., Ostaszewski, Adam (2004). An alternative to the Feltham-Ohlson valuation framework: using q-theoretic income to predict firm value. Accounting and Business Research, 34(4), 349-377. https://doi.org/10.1080/00014788.2004.9729977
  • Ostaszewski, Adam (2003). Dividend irrelevancy: Ohlson's uniqueness principle in several accounting variables. (CDAM research report series). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.