LSE creators

Number of items: 19.
Mathematics
  • Simon, Robert, Tomkowicz, Grzegorz (2023). A measure theoretic paradox from a continuous colouring rule. Mathematischen Annallen, https://doi.org/10.1007/s00208-023-02644-4 picture_as_pdf
  • Simon, Robert, Spiez, S, Torunczyk, H (2021). Games of incomplete information and myopic equilibria. Israel Journal of Mathematics, 241(2), 721 - 748. https://doi.org/10.1007/s11856-021-2111-7 picture_as_pdf
  • Simon, Robert Samuel, Tomkowicz, Grzegorz (2018). A Bayesian game without ϵ-equilibria. Israel Journal of Mathematics, 227(1), 215-231. https://doi.org/10.1007/s11856-018-1725-x
  • Simon, Robert Samuel (2016). The challenge of non-zero-sum stochastic games. International Journal of Game Theory, 45(1), 191-204. https://doi.org/10.1007/s00182-015-0497-3
  • Hernandez-Hernandez, Daniel, Simon, Robert, Zervos, Mihail (2015). A zero-sum game between a singular stochastic controller and a discretionary stopper. Annals of Applied Probability, 25(1), 46-80. https://doi.org/10.1214/13-AAP986
  • Gobbino, Massimo, Simon, Robert Samuel (2013). How many times can a function be iterated? Journal of Difference Equations and Applications, 19(2), 332-354. https://doi.org/10.1080/10236198.2011.639769
  • Simon, Robert Samuel (2012). A topological approach to quitting games. Mathematics of Operations Research, 37(1), 180-195. https://doi.org/10.1287/moor.1110.0524
  • Schick, Thomas, Simon, Robert Samuel, Spiez, Stanislav, Torunczyk, Henryk (2011). A parametrized version of the Borsuk-Ulam theorem. Bulletin of the London Mathematical Society, 43(6), 1035-1047. https://doi.org/10.1112/blms/bdr037
  • Gobbino, Massimo, Simon, Robert Samuel (2009). How many times can a function be iterated? arXiv.
  • Schick, Thomas, Simon, Robert, Spiez, Stanislav, Torunczyk, Henryk (2008). A parametrized version of the Borsuk Ulam theorem. London School of Economics and Political Science.
  • Simon, Robert Samuel, Spież, Stanisław, Torunczyk, Henryk (2008). Equilibria in a class of games and topological results implying their existence. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(1), 161-179. https://doi.org/10.1007/BF03191816
  • Simon, Robert (2007). The structure of non-zero-sum stochastic games. Advances in Applied Mathematics, 38(1), 1-26. https://doi.org/10.1016/j.aam.2006.07.002
  • Simon, Robert (2007). How many times can a function be iterated? London School of Economics and Political Science.
  • Simon, Robert (2006). Value and perfection in stochastic games. Israel Journal of Mathematics, 156(1), 285-310. https://doi.org/10.1007/BF02773836
  • Simon, Robert (2006). The common knowledge of formula exclusion. (CDAM research report series LSE-CDAM-2006-19). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Simon, Robert (2005). The structure of non-zero-sum stochastic games. (CDAM research report series LSE-CDAM-2005-19). Centre for Discrete and Applicable Mathematics, London School of Economics and Political Science.
  • Simon, Robert (2003). Games of incomplete information, ergodic theory, and the measurability of equilibria. Israel Journal of Mathematics, 138(1), 73-92. https://doi.org/10.1007/BF02783420
  • Simon, Robert S., Spież, Stanislaw, Toruńczyk, Henryk (2002). Equilibrium existence and topology in some repeated games with incomplete information. Transactions of the American Mathematical Society, 354(12), 5005-5026.
  • Simon, Robert Samuel (2002). Separation of joint plan equilibrium payoffs from the min-max functions. Games and Economic Behavior, 41, 79-102. https://doi.org/10.1016/S0899-8256(02)00016-7